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1
SYSTEM AND METHOD FOR DATA
CENTER SECURITY ENHANCEMENTS
LEVERAGING MANAGED SERVER SOCS

CROSS-REFERENCE TO RELATED PATENT
APPLICATIONS

This application is a Continuation of U.S. application Ser.
No. 13/475,722, filed May 18, 2012, which claims priority
from Provisional U.S. Application 61/489,569, filed May 24,
2011; U.S. application Ser. No. 13/475,722 is also a Con-
tinuation-In-Part of U.S. application Ser. No. 12/794,996,
filed Jun. 7, 2010, which claims priority from Provisional
U.S. Application 61/256,723, filed Oct. 30, 2009, all of
which are incorporated herein by reference in their entirety.

FIELD

The disclosure relates generally to security aspects for
data centers and in particular to data center security
enhancements leveraging server systems on a chip (SOCs)
or server switch fabrics.

BACKGROUND

FIGS. 1A and 1B show a classic data center network
aggregation as is currently well known. FIG. 1A shows a
diagrammatical view of a typical network data center archi-
tecture 100 wherein top level switches 101a-# are at the tops
of'racks 1024-# filled with blade servers 107a-» interspersed
with local routers 103a-f. Additional storage routers and
core switches. 1054-b and additional rack units 108a-n
contain additional servers 104 e-k and routers 106a-g FIG.
15 shows an exemplary physical view 110 of a system with
peripheral servers 11la-br arranged around edge router
systems 112a-4, which are placed around centrally located
core switching systems 113. Typically such an aggregation
110 has 1-Gb Ethernet from the rack servers to their top of
rack switches, and often 10 Gb Ethernet ports to the edge
and core routers. These typical data centers do not have good
security.

The idea of network security is well known. The terms
used in field of network security may include deep packet
inspection (DPI) and intrusion prevention systems (IPS)
which are also known as Intrusion Detection and Prevention
Systems (IDPS) and are network security appliances that
monitor network and/or system activities for malicious
activity. The main functions of intrusion prevention systems
are to identify malicious activity, log information about said
activity, attempt to block/stop activity, and report activity.
The network security may also utilize an intrusion detection
system (IDS), which is a device or software application that
monitors network and/or system activities for malicious
activities or policy violations and produces reports to a
Management Station.

FIG. 2 shows a typical implementation of an IDS and IPS
within a corporate network. In the typical implementation,
the IDS is focused on detection, monitoring, and reporting of
potential intrusions. As such, the IDS is implemented out-
of-line of the core network flow and is not invasive (located
outside of the firewall and attached to a DMZ switch as
shown in FIG. 2). The IPS adds the capability to prevent and
block potential intrusion or undesired network flows and the
IPS is implemented in-line of the core network flow.

Typical systems of a chip (SoCs) have security features,
such as security zones. For example, ARM® processors and
1P implement TrustZone as one layer of hardware, software,
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and system security. Further details of the TrustZone aspect
of ARM® processors and IP can be found at http://ww-
w.arm.com/products/processors/technologies/trustzone.php
and the materials located there are incorporated herein by
reference. The security of the system is achieved by parti-
tioning all of the SoC’s hardware and software resources so
that they exist in one of two worlds the Secure world for the
security subsystem, and the Normal world for everything
else. Hardware logic present in the TrustZone-enabled
AMBA3 AXI bus fabric ensures that no Secure world
resources can be accessed by the Normal world components,
enabling a strong security perimeter to be built between the
two.

The second aspect of the TrustZone hardware architecture
is the extensions that have been implemented in some of the
ARM® processor cores. These extensions enable a single
physical processor core to safely and efficiently execute
code from both the Normal world and the Secure world in
a time-sliced fashion. This removes the need for a dedicated
security processor core, which saves silicon area and power,
and allows high performance security software to run along-
side the Normal world operating environment. However,
these SOC security features have not been effectively
extended to the security of a data center.

Thus, it is desirable to provide a data center security
system and method that leverage server systems on a chip
(SOCs) and/or server fabrics, and it is to this end that the
disclosure is directed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B illustrate a typical data center system;

FIG. 2 shows a typical implementation of an IDS and IPS
within a corporate network;

FIG. 3 illustrates a high-level topology of a network
aggregating system that may be leveraged for increased
security in a data center;

FIG. 4 illustrates a block diagram of an exemplary switch
of'the network aggregation system that may be leveraged for
increased security in a data center;

FIG. 5 illustrates a network aggregation system with a
network switch and enhanced security;

FIG. 6 illustrates a four-node server fabric with a network
switch and enhanced security; and

FIG. 7 illustrates a small three-node server fabric with a
network switch and enhanced security.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

The disclosure is particularly applicable to a Calxeda™
server system on a chip and Calxeda™ switch fabrics as
illustrated and described below with the security aspects and
it is in this context that the disclosure will be described.
However, the principles described below can be applied to
other server-on-a-chip systems.

A server-on-a-chip (SOC) with packet switch functional-
ity is focused on network aggregation. It contains a layer 2
packet switch, with routing based on source/destination
MAC addresses. It further supports virtual local area net-
work (VLAN), with configurable VL AN filtering on domain
incoming packets to minimize unnecessary traffic in a
domain. The embedded MACs within the SOC do have
complete VLLAN support providing VLLAN capability to the
overall SOC without the embedded switch explicitly having
VLAN support.
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FIG. 3 shows a high-level topology 800 of the network
system that illustrates XAUI (a well-known interface stan-
dard) connected SoC nodes connected by the switching
fabric. Two 10 Gb Ethernet ports Eth0 8014 and Eth1 8015
come from the top of the tree. Ovals 802a-n are Calxeda™
nodes that comprise at least one computational processors
and an embedded switch. Each node may have five XAUI
links connected to the internal switch. The switching layers
use all five XAUI links for switching. Level 0 leaf nodes
802d, ¢ (i.e., NOz nodes, or Nxy, where x=level and y=item
number) only use one XAUI link to attach to the intercon-
nect, leaving four high-speed ports that can be used as
XAUI, 10 Gb Ethernet, PCle, SATA, etc., for attachment to
1/0. The vast majority of trees and fat trees have active
nodes only as leaf nodes, and the other nodes are pure
switching nodes. This approach makes routing much more
straightforward. Topology 800 has the flexibility to permit
every node to be a combination computational and switch
node, or just a switch node. Most tree-type implementations
have /O on the leaf nodes, but topology 800 let the I/O be
on any node. In general, placing the Ethernet at the top of the
tree (the Ethernet ports) minimizes the average number of
hops to the Ethernet.

The system and method also supports a routing using a
tree-like or graph topology that supports multiple links per
node, where each link is designated as an Up, Down, or
Lateral link, or both, within the topology. In addition, each
node in the system may be a combination computational/
switch node, or just a switch node, and input/output (I/O)
can reside on any node as described below in more detail.
The system may also provide a system with a segmented
Ethernet Media Access Control (MAC) architecture which
may have a method of re-purposing MAC IP addresses for
inside MACs and outside MACs, and leveraging what
would normally be the physical signaling for the MAC to
feed into the switch. The system may also provide a method
of non-spoofing communication, as well as a method of
fault-resilient broadcasting, which may have a method of
unicast misrouting for fault resilience.

A data center with the Calxeda™ server system on a chip
may be implemented using the set of fabric connected nodes
with Ethernet uplinks as shown in FIG. 3. Each node may be
one or more Calxeda server boxes each of which has at least
one Calxeda™ server system on a chip.

The system may also provide a rigorous security between
the management processor cores, such that management
processors can “trust” one another. In the example node 900
shown in FIG. 4 (which is described below in more detail),
there is a management processor core within each SoC
(block 906, FIG. 4). The software running on the manage-
ment processor is trusted because a) the vendor (in this case
Calxeda™) has developed and verified the code, b) non-
vendor code is not allowed to run on the processor. Main-
taining a Trust relationship between the management pro-
cessors allow them to communicate commands (e.g. reboot
another node) or request sensitive information from another
node without worrying that a user could spoof the request
and gain access to information or control of the system.

Typically the management processor, block 906, is run-
ning an embedded OS, while the multiple processor cores
represented by block 905 are more typically running a
standard operating system, such as Linux. The management
processor would typically use one of the Ethernet MACs, in
this case block 907, while the main processors, block 905,
would utilize the remaining Ethernet MACs, in this case
blocks 902 and 903.
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Each routing header unit 901, that may be implemented as
a processing unit or processor, prepends routing headers to
layer 2 Ethernet frames to form a routing frame going into
the fabric switch, and removes the routing headers as they
leave the switch and enter standard Ethernet MACs. The
routing frame is composed of the routing frame header plus
the core part of the Ethernet frame, and is structured as
shown in Table 1, below:

TABLE 1

Routing Header Prepended to Laver 2 Frame

Routing Frame

Header Ethernet Frame Packet
RF Header MAC MAC Ethertype/ Payload CRC32
destination Source Length (data and
padding)

The routing frame header (RF Header) typically consists
of the fields shown in Table 2, below:

TABLE 2

Routing Header Fields

Width

Field (Bits) Notes

Domain ID 5  Domain ID associated with this packet.

0 indicates that no domain has been specified.

Mgmt 1 Specifies that the packet is allowed on the

Domain private management domain.

Source Node 12 Source node ID

Source Port 2 0=MACO, 1 = MACI, 2 = MAC_management
processor, 3 = MAC__OUT

Dest Node 12 Destination node ID

Dest Port 2 0=MACO, 1 = MACI, 2 = MAC_management
processor, 3 = MAC__OUT

RF Type 2 Routing Frame Type (0 = Unicast, 1 =
Multicast, 2 = Neighbor
Multicast, 3 = Link Directed)

TTL 6  Time to Live-# of hops that this frame has
existed. Switch will drop packet if the TTL
threshold is exceeded (and notify management
processor of exception).

Broadcast 5 Broadcast ID for this source node for this

D broadcast packet.

Checksum Checksum of the frame header fields.

Total 46 +checksum

The Routing Header processor 901 contains a MAC
Lookup CAM (Content Addressable Memory) (MCAM),
macAddrLookup, that maps from 6 byte MAC addresses to
12-bit Node IDs, as shown in Table 3, below.

TABLE 3

MAC Address CAM (MCAM)

MAC Lookup MAC Lookup

CAM Input CAM Output
Node Local MAC Address Node ID Port ID
1 bit 6 bytes 12 bits 2 bits

The approach to security domain management in the
system and method disclosed here is as follows: Support
multiple domain IDs within the fabric. Allow each of the
MACs within a node (management processor, MACO,
MACI, Gateway) to be assigned to a domain ID individually
(and tagged with domain O if not set). Allow each of the
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MACs within a node to have a bit indicating access to the
management domain. The domain IDs associated with a
MAC could only be assigned by the management processor,
and could not be altered by the A9. For frames generated by
MAC:s (both inside and outside), the routing frame processor
would tag the routing frame with the domain ID and
management domain state associated with that MAC.
Domains would provide the effect of tunnels or VL ANs, in
that they keep packets (both unicast and multicast) within
that domain, allowing MACs outside that domain to be able
to neither sniff or spoof those packets. Additionally, this
approach would employ a five-bit domain ID. It would add
options to control domain processing, such as, for example,
a switch with a boolean per MAC that defines whether
packets are delivered with non-defined (i.e., zero) domain
1D, or a switch that has a boolean per MAC that defines
whether packets are delivered with defined (non-zero) but
non-matching domain IDs. A further option in the switch
could turn off node encoded MAC addresses per MAC
(eliminating another style of potential attack vector). Each of
these options described in this paragraph are options that are
implemented in the fabric switch, controlled by bits in the
control status registers (CSRs) of the fabric switch. Software
initializes the CSRs to the desired set of options.

To keep management processor to management processor
communication secure, the management domain bit on all
management processor MACs could be marked. Generally,
the management processor should route on domain 1 (by
convention). Such a technique allows all the management
processor’s to tunnel packets on the management domain so
that they cannot be inspected or spoofed by any other
devices (inside or outside the fabric), on other VLANs or
domains. Further, to provide a secure management LAN, a
gateway MAC that has the management domain bit set could
be assigned, keeping management packets private to the
management processor domain. Additionally, the switch
fabric could support “multi-tenant” within itself, by associ-
ating each gateway MAC with a separate domain. For
example, each gateway MAC could connect to an individual
port on an outside router, allowing that port to be optionally
associated with a VLAN. As the packets come into the
gateway, they are tagged with the domain ID, keeping that
traffic private to the MACs associated with that domain
across the fabric.

Unicast routing is responsible for routing non-multicast
(i.e. unicast) packets to the next node. This is done by
utilizing a software computed unicastRoute[ | next node
routing table that provides a vector of available links to get
to the destination node.

Server Interconnect Fabric Security

The above server fabric and switch fabric can benefit by
enhanced security and a number of techniques to leverage
and extend upon server interconnect fabrics that have some
or all of the characteristics described above to dramatically
improve security within a data center are described. The
different embodiments implement “packet processing”
which may include a wide range of packet processing
including, but not limited to: IDS functionality, IPS func-
tionality, sFlow monitoring (wherein sFlow is a specification
for monitoring computer networks set forth in an sFlow
specification that is RFC 3176) Packet routing or bridging
between networks, Deep packet inspection, Packet logging,
Transparent VPN encapsulation, Packet encryption/decryp-
tion and/or Packet compression/decompression.

Use of Management Processor for Out-of-Band Security

A first embodiment relates to the use of management
processor for out-of-band security. The integration of a
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6

separate management processor within the same SoC as the
core application processors enables new classes of security.
The enabling attributes of the management processor
include:

Management processor running within Secure world
security zone. Application processor running in Normal
world security zone, although underlying secure hypervisors
on the Application processor may have the ability to run in
Secure world.

The management processor by running in Secure world
has complete access to all the resources of the SoC includ-
ing:

processor state of the application processor

debug control of the application processor

access to all memory and peripheral resources of the Soc

This technique allows the management processor running
in Secure world to provide Out-of-Band (OOB), as seen by
the application processors, communication between nodes to
facilitate security/integrity monitoring services. These inno-
vations include:

Since the management processor can access all SoC
RAM, management processors on different nodes can com-
pare portions of the DRAM on their nodes to identify
unexpected changes to memory regions that are expected to
not vary over time.

This facilitates not only security use cases, but also a
dynamic fault discovery use case.

Live capture of a node’s memory image, or parts of it, or
signatures of it, for any purpose—troubleshooting, foren-
sics, image migration, hibernation, by other management or
application processors, or even by external systems. This
OOB peek mechanism could be used to facilitate malware
detection from a central location utilizing a management
controller that just answers requests to fetch portions of
memory, offloading the analysis to a computer with more
resources.

This allows the malware detection engine to be free from
modification attempts by malware—there isn’t anything the
malware can do to disable the “anti-virus” detection since
the mechanisms are completely OOB and protected from the
application processors.

Can be used in combination with code running on the
application  processor—application ~ whitelisting, for
example. The application processor can request the man-
agement processor to verify the authenticity of some code
before running it. This should be more secure than white-
listing code running in the kernel on the application proces-
sor, which is the current technique being used.

Isolation of Nodes that have been Security Compromised
or are Malfunctioning

The second embodiment relates to the isolation of nodes
that have been security compromised or are malfunctioning.
There are cases where, though other known techniques not
described herein, a determination has been made that a node
needs to be isolated, including:

A security violation has been detected on a node, includ-
ing a compromised OS kernel, a root kit, or a damaging
virus.

There are also failure modes, both hardware and software,
that could cause a node to fail in such a way that it is causing
disruptive traffic on the server fabric.

Compromise detection is software driven, can come from
any source including failures in remote attestation, malware
detection, IPS/IDS built into the fabric, or external, manual
operator control, management processor DRAM monitoring
as discussed in Disclosure 9, and by other known means.
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The following techniques can be used to isolate offending
nodes:

The management processor can power off the application
processor, or the offending peripheral.

The management processor can alter the security zone
settings to software isolate the offending device or processor.

The management processor can alter the fabric MCAM,
routing tables, or gateway node IDs to prevent the fabric
from emitting potentially compromised packets into the
fabric.

Use the Management Processor to Provide Controller/
Device Virtualization for the Application Processors

The third embodiment relates to the use of the manage-
ment processor to provide controller/device virtualization
for the application processors. The management processor
can be used to provide controller or device virtualization for
the application processor for both local and remote devices
using the following technique:

Use TrustZone or similar security zones to block access to
a device from the application processors, and then have the
application processor communicate to the management pro-
cessor to access it. For example, the application processor
could send a NAND read request to the management pro-
cessor via IPC (Inter-Processor Communication channel),
the management processor could approve or disapprove it,
and then forward the request to the NAND controller
protected in Secure world. The management processor can
then return the status of the request to the application
processor via IPC. This mechanism can be similarly used for
other forms of access control and logging.

A network firewall, IPS, or IDS can also be implemented
via this technique. The management processor can inspect
packets before forwarding them to a MAC that is protected
via Secure World.

Trusted Platform Module (TPM) services can similarly be
provided by the management processor.

The management processor can take advantage of the
server fabric when deciding what to do with requests to
access devices—request remote authorization for example.

The management processor could log requests either
locally or remotely.

Using the Management Processor to Provide a Secure
Logging Path

The fourth embodiment relates to using the management
processor to provide a secure logging path since keeping
logs secure for audits is a significant aspect of most regu-
latory/financial compliance requirements. This can be
accomplished using the following technique:

In traditional systems, the application processor would
rely on logging to local storage, network storage, or com-
municating logging data to a remote server. With this
technique, the application processor can send log messages
securely to the management processor.

The logging mechanism of the management processor is
thus completely decoupled and secured from the application
processor.

The management processor then has multiple options for
persisting the secured logging, including:

Logging to a central log server via it’s secure manage-
ment fabric domain

Log locally to private storage to the management proces-
sor

Log to other storage subsystems protected in the Secure
trust world, not accessible to the application processor.

Use the Management Processor to Provide a Secure
Auditing Path

10

15

20

25

30

35

40

45

50

55

60

65

8

The fifth embodiment relates to the use of the manage-
ment processor to provide a secure auditing path. Instead of
relying on the main network domain to the application
processor to perform audits of systems, this technique will
utilize the management domain to secure the audit pro-
cesses.

Allows network audits to be done securely, in secure
network paths.

As an example, part of an audit may be to perform a port
scan of a system. This is relatively low bandwidth—instead
of talking directly to the application processor over its
normal data path, the request can be proxied via the man-
agement processor in a network-proxy type fashion.

In one implementation, the management processor can do
this is a ‘dumb’ method, using techniques such as SNAT
(secure network address translation) to ensure the responses
are routed back through the management processor instead
of out over the fabric.

Or the management processor can have local auditing
control. An example of this implementation may include
responding to a port scan request and generate the port scan
traffic itself. An additional example is logging in via ssh to
verify logs, file integrity, permission integrity, or similar
auditing tasks.

Use the Management Processor to Provide Out-of-Band
(OOB) Network Access to the Application Processor

The sixth embodiment relates to the use of the manage-
ment processor to provide out-of-band (OOB) network
access to the application processor. This technique extends
the technique described above by using the management
processor as a NATing router using the following technique:

An application processor may use a Ethernet controller
(say MACO) to communicate in its main ‘data path’—traffic
sent out it is routed out via the fabric like normal, at line rate,
not touched by the management processor.

An application processor can further use a second Ether-
net controller (say MAC1) to communicate with external
hosts via the management processor.

An extra MAC address can be associated with a node’s
management processor’s MAC port so that any traffic sent to
either of two MAC addresses goes to that port.

One of the MAC addresses can be used for normal IP
traffic for the management processor.

The other can be recognized by special software on the
management processor as being destined for the application
processor.

The management processor can then do a NAT type
change of the destination MAC address of the packet so that
the fabric switch will route it to MAC1, where the applica-
tion processor will receive it. It can also change the source
MAC address to the original destination MAC address of the
packet, so that a response to the source MAC address will
also be directed to the management processor’s MAC.

The application processor side won’t need any special
software to support this.

Could potentially do this on not just the local application
processor, but also over the fabric to other nodes. Could use
a second application processor instead of the local manage-
ment processor in that implementation.

Dynamic Security Zones for DMA Masters

The seventh embodiment relates to dynamic security
zones for direct memory access (DMA) masters. With the
ARM TrustZone implementation, as well as other security
zone implementations, the DMA Masters, including inde-
pendent DMA controllers as well as those found embedded
in peripheral IP such as disk and ethernet controllers, are
configured to either respond to the Secure world or the
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Normal world. IP vendors either hardwire this setting and
don’t allow you to change it, or offer a parameter to set it
one-way permanently. The following technique extends the
fixed relationship of DMA Master’s to security zones:

A security zone register is added between the internal SoC
fabric and each DMA master.

The security zone register is itself protected in Secure
world so that untrusted master’s can change it.

The security zone register provides the current security
zone to the internal SoC fabric for that transaction.

This enables use cases including:

Static configuration of DMA master security zones at boot
time. If a thread running in Normal world attempts to access
a DMA master that is configured in Secure world than the
thread will get an equivalent of a bus abort.

Ability for trusted hypervisors running in Secure world to
dynamically change the visibility of DM A master’s depend-
ing. This allows for some guest OS’s to be able to directly
access a DMA master while other’s won’t have visibility to
it.

Secure Boot-Loading of the Application Processor by the
Management Processor

The eighth embodiment relates to secure boot-loading of
the application processor by the management processor. The
management processor can bootstrap the application pro-
cessor by preloading the application processor’s boot-loader
into DRAM prior to releasing the application processor from
reset. This allows the management processor to completely
control the contents of the application processors boot-
loader, including whether or not the application processor
exits secure world immediately and permanently, whether
the application processor can selectively enter secure mode,
and which interrupts it can service in secure mode only. It
also allows the application processor’s boot-loader to be
cryptographically verified prior to loading it, to ensure the
integrity of the boot-loader, or to insure the boot loader was
signed by a proper authority. It also allows the application
processor’s boot loader to be stored in a location inacces-
sible to the application processor itself, which prevents the
application processor from modifying it, while still allowing
it to be updated via the management processor’s secure
channels. The management processor can use its secure
management fabric domain to source the application pro-
cessor’s boot-loader dynamically on demand, or can retrieve
new versions of it that can be stored in local non-volatile
memory.

DMA Master Configurable Coherency

The ninth embodiment relates to DMA master configu-
rable coherency. In traditional SoC implementations, a
DMA master is designed to be either cache-coherent, or
non-coherent. This design usually includes the following
characteristics:

For a cache-coherent implementation, the DMA master is
connected to a cache-coherency controller. As an example,
in one ARM implementation, the DMA master would be
connected via AXI to the Accelerator Coherency Port.

For a non-cache coherent implementation, the DMA
master is connected via the SoC internal fabric directly to the
memory subsystem, bypassing the caching subsystem.

Other common implementation details include design
configuration of the DMA master on cacheability configu-
ration.

Using the technique of this embodiment, a DMA master
may be dynamically configured as either coherent or non-
coherent using the following technique:

A software controlled multiplexer may be defined to map
the DMA Master to either a coherent port on the cache
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coherency controller, or directly to the memory subsystem,
bypassing the caching subsystem.

Software controlled register over-rides any hardwired
cacheability settings found in the DMA Master IP, so cache-
ability can be altered when switching between the coherent
and non-coherent configuration.

The cache-coherent and non-coherent interfaces to a
DMA controller can affect both the ease of writing the
device driver and the resulting performance. But, these
tradeoffs can vary by operating system, implementation of
the device driver, as well as the devices connected to the
DMA master.

This technique allows a specific hardware/software/sys-
tem implementation to be optimized at boot-time, rather
than hard-wiring the DMA Master coherency decision at
SoC design time.

While the foregoing has been with reference to a particu-
lar embodiment of the disclosure, it will be appreciated by
those skilled in the art that changes in this embodiment may
be made without departing from the principles and spirit of
the disclosure, the scope of which is defined by the appended
claims.

What is claimed is:

1. A system on a chip (SoC) node comprising:

a management processor configured to generate manage-

ment information;

an application processor coupled to the management

processor; and

a routing header unit configured to prepend a routing

header to the management information to form a man-
agement information routing frame, wherein the rout-
ing header includes a management processor domain
indicator which specifies that the management infor-
mation routing frame is to remain within a management
processor domain during routing;

wherein the management processor is further configured

to have access to a processor state of the application
processor, access to a debug control of the application
processor, and access to a memory and peripheral
resources of the SoC node,

wherein the management processor is further configured

to run within a secure world security zone, and wherein
the application processor in the plurality of nodes is
configured to run within a normal world security zone.

2. The SoC node of claim 1, further comprising a media
access control (MAC) that is associated with the manage-
ment processor, wherein the MAC is configured to form a
MAC packet for the management information, and wherein
the routing header unit is further configured to prepend the
routing header to the MAC packet.

3. The SoC node of claim 1, wherein the management
processor is further configured to run an embedded operat-
ing system (OS), and wherein the application processor is
configured to run a standard OS.

4. The SoC node of claim 3, wherein the standard OS is
Linux.

5. The SoC node of claim 1, wherein the management
processor domain indicator is one bit.

6. The SoC node of claim 1, wherein the management
processor is in the management processor domain, and
wherein the application processor is not in the management
processor domain.

7. A system on a chip (SoC) node fabric comprising:

a plurality of SoC nodes interconnected to each other to

form a fabric, wherein each of the plurality of SoC
nodes includes:
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a management processor configured to generate man-
agement information;
an application processor coupled to the management
processor; and
a routing header unit configured to prepend a routing
header to the management information to form a
management information routing frame, wherein the
routing header comprises a management processor
domain indicator which specifies that the manage-
ment information routing frame is to remain within
a management processor domain during routing;
wherein the management processors are further config-
ured to have access to a processor state of the appli-
cation processors, access to a debug control of the
application processors, and access to a memory and
peripheral resources of the plurality of SoC nodes,
wherein the management processors are further config-
ured to run within a secure world security zone, and
wherein the application processors in the plurality of
nodes are configured to run within a normal world
security zone.

8. The SoC node fabric of claim 7, wherein the manage-
ment processor domain comprises the management proces-
sors but not the application processors.

9. The SoC node fabric of claim 7, wherein the manage-
ment processors are further configured to run verified code
thereon.

10. The SoC node fabric of claim 7, wherein the man-
agement processors are further configured to communicate
commands or sensitive information with one another.

11. The SoC node fabric of claim 7, wherein the man-
agement processors are further configured to provide out-
of-band security for the plurality of SoC nodes.

12. The SoC node fabric of claim 7, wherein the man-
agement processor domain comprises a gateway media
access control (MAC).

13. A method comprising:

interconnecting a plurality of SoC nodes, wherein each of

the plurality of SoC nodes comprises a management
processor, an application processor, and a routing
header unit;
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generating, by the management processors in the plurality
of SoC nodes, management information, wherein the
management processors are configured to have access
to a processor state of the application processors, access
to a debug control of the application processors, and
access to a memory and peripheral resources of the
plurality of SoC nodes: and
prepending, by the routing header units in the SoC node,
a routing header to the management information to
form a management information routing frame,
wherein the routing header includes a management
processor domain indicator which specifies that the
management information routing frame is to remain
within a management processor domain during routing,

wherein the management processors are further config-
ured to run within a secure world security zone, and
wherein the application processors in the plurality of
nodes are configured to run within a normal world
security zone.

14. The method of claim 13, wherein the management
processor domain comprises the management processors but
not the application processors.

15. The method of claim 13, further comprising:

running the management processors within a secure world

security zone; and

running the application processors within a normal world

security zone.

16. The method of claim 13, further comprising running,
by the management processors in the plurality of SoC nodes,
verified code.

17. The method of claim 13, further comprising commu-
nicating, by the management processors in the plurality of
SoC nodes, commands or sensitive information with one
another.

18. The method of claim 13, further comprising provid-
ing, by the management processors, out-of-band security for
the plurality of SoC nodes.
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